
Intro to Recursion 

Warm-up/Definitions: 

1. What is the general idea behind recursion? That is, if I give you some block in Snap! (and 

let you see the code that makes it up), what is the quickest way to identify if the block is 

recursive? 

2. What are the two cases to deal with in most recursive problems? 

3. What is meant by the idea of the recursive leap of faith? 

 

General Strategy for Approaching Recursive Problems: 

1. Understand what the problem is asking. There is no use jumping right into a problem 

without first understanding what it is asking. For example, the Fibonacci function is a 

common example of a recursively define function. If you were asked to code this, it is a 

much better approach to first write down and figure out how Fibonacci works 

mathematically and then attempt to code it in Python, rather than trying to understand how 

it works along the way. 

a. What are your inputs and outputs? 

b. If you can draw a diagram to help visualize the problem, do so! 

c. If you are dealing with a fractal, identify instances of the previous level in each 

subsequent level. 

2. Tackle the two cases. 

a. In general, start by asking yourself if there is a simple base case. Oftentimes, though 

not always, this will be the case. Ask yourself, “What is the simplest possible case 

of this problem?” If you are unable to think of one, then go ahead and move on to 

the recursive case, as with some problems the base case becomes more clear 

afterward. 

b. The recursive case tends to be more challenging, but it too can be conquered, 

provided you have faith—faith in the recursion. What does this mean? Remember 

that the whole point of recursion is to break a large problem into smaller versions 

of itself. When you are in the midst of mapping out a solution to the recursive case, 

ask yourself the following questions: “Is there some function that would be very 

useful to me here? Is it possible that this is the very function which I am currently 

writing?” If it is, you may as well use it! This may sound a bit confusing at first, 

but the idea will become more clear as you do more examples. 

i. A Cautionary Note: Many students, especially in future CS classes 

(where the recursion problems become harder), fall into the trap of 

thinking that the recursive leap of faith means that no work is necessary 

on your part as long as you trust your block (or function, in text-based 

languages). Then, they will wonder why their code does not work, ever 

so desperately and naively insisting that they took the leap of faith. 

Remember the leap of faith is just a tool to help you solve the problem, 



and simply means that you can assume your function works well 

enough for you to use it in a carefully and properly constructed 

solution. It does not mean that you can write any somewhat accurate 

solution and expect it to work just because you took the leap of faith. 

The best way to think about it is as follows: your block will do its job, 

but only if you do yours. 

3. Patterns are a thing—find them. 

a. As you expose yourself to more problems, you will find that many follow similar 

patterns. Here are a few to keep an eye out for in your two cases. 

b. Common Base Case Patterns 

i. List Problems: Very often, the base case will just involve reporting an empty 

list. 

ii. Math Problems: The base case will often just be some predefined value. For 

example, in factorial, 0! And 1! Are both defined as being equal to 1. 

iii. Other Problems: Just think about the problem outside the context of 

programming, and chances are you will be able to work it out. 

c. Common Recursive Case Patterns 

i. List Problems: Reporting an item in front of the recursive block called on 

all but the first item of the list (or just calling the recursive block on the rest 

of the list, if you do not want to keep the first item). 

ii. Math Problems: Many times, the mathematical function may just be defined 

recursively, such as Fibonacci. 

iii. Other Problems: If you are struggling, just consider how you would solve 

the problem if you didn’t have to code it, and try to somehow massage that 

pseudocode into something which uses a recursive call. 

Recursive Thinking Practice: 

1. Your job is to figure out how many total apples there are in an apple tree. This happens to 

be a really aesthetic apple tree. Each branch has more branches, which in turn has more 

branches, and so on and so forth. Now, you could definitely just traverse all these branches 

one by one and count the apples, but that would take a while, even with your surely amazing 

climbing ability. You know one thing: Each branch at the first level of the tree has the 

ability to tell you how many total apples it has (this includes the apples on every eventual 

branch that stems from it. What should you do? 

2. Murtz has kidnapped the rest of the CS 61A staff and is holding them hostage in Soda. 

Rumor has it he is forcing them to do CS 70 problems day and night, and their only source 

of entertainment and comfort is a stuffed Lambda. Luckily, Albert was able to get a 

message out to you on Piazza, and you saw it before Murtz deleted it. Unfortunately, a lock 

has been placed on the lab door. The only way in is to solve the following problem: Design 

a recursive algorithm which takes in a list which can contain anything. Your algorithm 

should keep only the Fibonacci numbers from this list, and return a new list with these 

numbers squared. Assume you have a block “FIB?” which reports if a number is a 

Fibonacci number or not—but it errors if you pass in anything other than a number. You 



may not use map, filter, or reduce. Also, you do not have to describe the code precisely in 

Python—pseudocode is fine. 


